第5章 家教:二元一次方程2

元代。

爱好研究数学的李冶看到天幕的这一段很是激动,他把自己的一生都用来研究数学了,数学可以说是自己的毕生追求。

后世的人也研究这个?!

找到同道中人的他心情澎湃。

虽然书写的形式很不一样,但孟棠的讲述和因果推理衔接明了,使得他很快理解并跟上思路。

让李冶更激动的是,在天幕中的这位姑娘所讲授的二元一次方程的解法和复查方法太妙了!

这段讲解过程简明扼要切中要点,复查的两种方法对于所有的方程题都很实用,不禁点头称赞。

在迅速反应出这些内容背后的逻辑之后,他越发对后世人的数学研究而充满好奇!

自己已经编写的《详解九章算法》中就有自己对于方程的解法的研究,要说最自豪的就是引入了多项式方程的概念。

-看来后世人对数学很重视,李冶为自己钟爱的数学在后世的发展感到深深地骄傲!

孟棠继续讲二元一次方程组的第二种解出未知数的方法,

“那我们再看加减消元法!

那加减消元法是什么样呢?

我们要看到二元一次方程组包含两个方程,每个方程分别包含未知项。对不对?

那我们在讲题的过程中,先要观察哪一个未知数好消除一些,通过把两个方程加减来消除其中一个未知数。

接着就剩下一个未知数了,也就是把一个二元一次方程组变成了一个一元一次方程。

这种方法就叫加减消元法。

概念比较抽象,我们直接解一道题开看一下如何使用加减消元法来解二元一次方程。

就以这个题为例,

x-y=5,我们叫①式,2x+y=13,我们叫②式。

我们通过观察会发现,在这两个方程中,y比x更容易消除,并且用加法,①式加②式,我们能得到什么?”孟棠又开始启发式提问。

雅乐想了一会,“会得到3x=18,x=6。”

“很好!那x=?”

“等于1。”

“很好!那这种方法就叫加减消元法。

这道题比较简单的地方在于两个方程中的y的因数互为相反数,所以加起来可以直接消除掉。但在看这道题,稍微有点难度了。

3x-2y=5①,2x-3y=0②,对于这一组二元一次方程,应该怎么办?”

“嗯……”雅乐忽然为难了。

“我们要怎么样呢?比如要消除x,一个有3x,一个有2x,所以要找3和2的公倍数,是61.所以要给①式乘以……”孟棠慢慢引导雅乐思路。

“乘以2!”

“很棒!好!那给②式要乘以……”

“乘以3!”雅乐反应越来越快!

“很好!所以现在①式变成6x-4y=10,②式变成6x-9y=0。好!那下一步要怎么办?用加法还是用减法?变成什么结果呢?”

“用减法,变成5y=10,y=2!”

“那接下来,就是把y=2代入任意一个方程,x就解出来了……等于……”

“等于3!”雅乐越来越自信的回答!

“很好!我们来回复一下这两种方法,你看看,这两种方法到最后,都是哪一类方程?”孟棠进一步深化学习过程。

“都是一元一次方程。

是的!我们很容易观察到,二元一次方程组解到最后,就变成一元一次方程。

可以说,无论是代入消元法还是加减消元法都是脱掉二元这一个看起来比较复杂的帽子,然后解一元一次方程。”

“不仅如此,增加更多的未知数,三元一次方程,四元一次,五元一次,到最后,都会变成这样,只不过需要运用一些方法来消元。

而这里的方法就是加减消元和代入消元。